Model-Theoretic characterization of intuitionistic Propositional Formulas

نویسنده

  • Grigory K. Olkhovikov
چکیده

Notions of k-asimulation and asimulation are introduced as asymmetric counterparts to k-bisimulation and bisimulation, respectively. It is proved that a first-order formula is equivalent to a standard translation of an intuitionistic propositional formula iff it is invariant with respect to k-asimulations for some k, and then that a first-order formula is equivalent to a standard translation of an intuitionistic propositional formula iff it is invariant with respect to asimulations. Finally, it is proved that a first-order formula is equivalent to a standard translation of an intuitionistic propositional formula over the class of intuitionistic Kripke models iff it is invariant with respect to asimulations between intuitionistic models. §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propositional Calculus and Realizability

In [13], Kleene formulated a truth-notion called "readability" for formulas of intuitionistic number theory(1). David Nelson(2) showed that every number-theoretic formula deducible in the intuitionistic predicate calculus(3) (stated by means of schemata, without proposition or predicate variables) from realizable number-theoretic formulas is realizable. In particular, then, every formula in the...

متن کامل

Deciding Provability of Linear Logic Formulas

A great deal of insight about a logic can be derived from the study of the diiculty of deciding if a given formula is provable in that logic. Most rst order logics are undecidable and are linear time decidable with no quantiiers and no propositional symbols. However , logics diier greatly in the complexity of deciding propositional formulas. For example, rst-order classical logic is undecidable...

متن کامل

Statecharts: From Visual Syntax to Model-Theoretic Semantics

This paper presents a novel model–theoretic account of Harel, Pnueli and Shalev’s original step semantics of the visual specification language Statecharts. The graphical syntax of a Statechart is read, directly and structurally, as a formula in propositional logic. This proposition captures all the logical constraints imposed by the diagram on the Statechart’s semantics, i.e., the possible sets...

متن کامل

Statecharts : From Visual Syntax to Model { Theoretic

This paper presents a novel model{theoretic account of Harel, Pnueli and Shalev's original step semantics of the visual speciication language Statecharts. The graphical syntax of a Statechart is read, directly and structurally, as a formula in propositional logic. This proposition completely captures all the logical constraints imposed by the diagram on the Statecharts's semantics, i.e., the po...

متن کامل

An Interactive Prover for Bi-intuitionistic Logic

In this paper we present an interactive prover for deciding formulas in propositional bi-intuitionistic logic (BiInt). This tool is based on a recent connection-based characterization of bi-intuitionistic validity through bi-intuitionistic resource graphs (biRG). After giving the main concepts and principles we illustrate how to use this interactive proof or counter-model building assistant and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Rew. Symb. Logic

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013